The upcrossings index and the extremal index
نویسندگان
چکیده
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملThe Extremal Index for a Random Tessellation
Let m be a random tessellation in R, d ≥ 1, observed in the window Wρ = ρ1/d[0, 1], ρ > 0, and let f be a geometrical characteristic. We investigate the asymptotic behaviour of the maximum of f(C) over all cells C ∈ m with nucleus in Wρ as ρ goes to infinity. When the normalized maximum converges, we show that its asymptotic distribution depends on the so-called extremal index. Two examples of ...
متن کاملEstimating the multivariate extremal index function
The multivariate extremal index function relates the asymptotic distribution of the vector of pointwise maxima of a multivariate stationary sequence to that of the independent sequence from the same stationary distribution. It also measures the degree of clustering of extremes in the multivariate process. In this paper, we construct nonparametric estimators of this function and prove their asym...
متن کاملExtremal Hosoya index and Merrifield-Simmons index of hexagonal spiders
For any graph G, let m(G) and i(G) be the numbers of matchings (i.e., the Hosoya index) and the number of independent sets (i.e., the Merrifield–Simmons index) of G, respectively. In this paper, we show that the linear hexagonal spider and zig-zag hexagonal spider attain the extremal values of Hosoya index and Merrifield–Simmons index, respectively. c © 2008 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2006
ISSN: 0021-9002,1475-6072
DOI: 10.1239/jap/1165505198